Linkage between Increased Nociception and Olfaction via a SCN9A Haplotype
نویسندگان
چکیده
BACKGROUND AND AIMS Mutations reducing the function of Nav1.7 sodium channels entail diminished pain perception and olfactory acuity, suggesting a link between nociception and olfaction at ion channel level. We hypothesized that if such link exists, it should work in both directions and gain-of-function Nav1.7 mutations known to be associated with increased pain perception should also increase olfactory acuity. METHODS SCN9A variants were assessed known to enhance pain perception and found more frequently in the average population. Specifically, carriers of SCN9A variants rs41268673C>A (P610T; n = 14) or rs6746030C>T (R1150W; n = 21) were compared with non-carriers (n = 40). Olfactory function was quantified by assessing odor threshold, odor discrimination and odor identification using an established olfactory test. Nociception was assessed by measuring pain thresholds to experimental nociceptive stimuli (punctate and blunt mechanical pressure, heat and electrical stimuli). RESULTS The number of carried alleles of the non-mutated SCN9A haplotype rs41268673C/rs6746030C was significantly associated with the comparatively highest olfactory threshold (0 alleles: threshold at phenylethylethanol dilution step 12 of 16 (n = 1), 1 allele: 10.6±2.6 (n = 34), 2 alleles: 9.5±2.1 (n = 40)). The same SCN9A haplotype determined the pain threshold to blunt pressure stimuli (0 alleles: 21.1 N/m(2), 1 allele: 29.8±10.4 N/m(2), 2 alleles: 33.5±10.2 N/m(2)). CONCLUSIONS The findings established a working link between nociception and olfaction via Nav1.7 in the gain-of-function direction. Hence, together with the known reduced olfaction and pain in loss-of-function mutations, a bidirectional genetic functional association between nociception and olfaction exists at Nav1.7 level.
منابع مشابه
Link between pain and olfaction in an inherited sodium channelopathy.
In a major breakthrough in our understanding of human olfaction, a recent study showed that loss-of-function mutations in the voltage-gated sodium channel Nav1.7, encoded by the gene SCN9A, cause a loss of the sense of smell (congenital general anosmia) in mice and humans. These findings are of special clinical relevance because Nav1.7 was previously known for its essential role in the percepti...
متن کاملMutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia.
Primary erythermalgia is a rare autosomal dominant disease characterised by intermittent burning pain with redness and heat in the extremities. A previous study established the linkage of primary erythermalgia to a 7.94 cM interval on chromosome 2q, but the causative gene was not identified. We performed linkage analysis in a Chinese family with primary erythermalgia, and screened the mutations...
متن کاملMicroRNA-30b regulates expression of the sodium channel Nav1.7 in nerve injury-induced neuropathic pain in the rat
Voltage-gated sodium channels, which are involved in pain pathways, have emerged as major targets for therapeutic intervention in pain disorders. Nav1.7, the tetrodotoxin-sensitive voltage-gated sodium channel isoform encoded by SCN9A and predominantly expressed in pain-sensing neurons in the dorsal root ganglion, plays a crucial role in nociception. MicroRNAs are highly conserved, small non-co...
متن کاملPrimary erythermalgia as a sodium channelopathy: screening for SCN9A mutations: exclusion of a causal role of SCN10A and SCN11A.
OBJECTIVES To elucidate the rate of missense mutations in the SCN9A gene (which encodes sodium channel Na(v)1.7) (OMIM 603415) among patients with primary erythermalgia and to examine the possibility that other sodium channels can cause the disease. DESIGN Case series. SETTING Department of Medicine, Radboud University Nijmegen, the Netherlands. PARTICIPANTS Six patients with sporadic and...
متن کاملA Role of SCN9A in Human Epilepsies, As a Cause of Febrile Seizures and As a Potential Modifier of Dravet Syndrome
A follow-up study of a large Utah family with significant linkage to chromosome 2q24 led us to identify a new febrile seizure (FS) gene, SCN9A encoding Na(v)1.7. In 21 affected members, we uncovered a potential mutation in a highly conserved amino acid, p.N641Y, in the large cytoplasmic loop between transmembrane domains I and II that was absent from 586 ethnically matched population control ch...
متن کامل